Building Municipal Infrastructure Transportation Industrial Power Environment

CanWEA Wind Energy Forum

New Trends in Uncertainty Analysis

Rob Istchenko, P.Eng.

GENIVAR Consultants LP

Toronto, ON, April 14, 2010

Presentation Overview

- 1. Wind Resource Assessment Uncertainty Intro
- 2. Components
- 3. Aggregation of Uncertainty
- 4. Correlated Uncertainty
- 5. Time-Varying Uncertainty
- 6. Reality Check...
- 7. Minimizing Uncertainty
- 8. Concluding Remarks

Resource Assessment Uncertainty Intro

- Uncertainty in energy assessment is inevitable
- Uncertainty affects:
 - project feasibility
 - financial risk and returns
- Estimates of uncertainty typically used to define probabilities of exceedence for wind power project yields (P50, P70, P95...)
- The goal is to identify, quantify and minimize sources of uncertainty

Resource Assessment Uncertainty Intro

- Uncertainty frequently defined as "standard uncertainty"
- Can be expressed as a standard deviation assuming a normal distribution
- Some sources report accuracy rather than uncertainty
- Accuracy reflects the maximum error while uncertainty is based on the distribution of errors

Resource Assessment Uncertainty Intro

- Uncertainty frequently defined as "standard uncertainty"
- Can be expressed as a standard deviation assuming a normal distribution
- Some sources report accuracy rather than uncertainty
- Accuracy reflects the maximum error while uncertainty is based on the distribution of errors
- Want to minimize the width and match distribution of estimate with actual (with some understood exceptions)

Contributions to Uncertainty

Wind Speed and Production:

- Anemometer
- Data Quality
- Shear Profile
- Tower Effects
- MCP
- Wind Variability
- Wind Flow Modelling

Losses:

- Power Curve
- Availability
- Wake
- Electrical
- Environmental
- Curtailment

Losses are like uncertainties with a negative bias...

Aggregation of Uncertainty

- Normally distributed uncertainties may be combined by root-sum-squares; however, not all uncertainties are normally distributed...
- Important to identify sources of bias in resource assessment whether due ٠ to met tower placement, sensor performance, availability etc.

6

Δ

Aggregation of Uncertainty

- Uncertainties may also be combined using a stochastic random sampling approach (such as Monte Carlo simulation)
- In the stochastic approach, many possible outcomes are randomly sampled for each uncertainty component flexibility to choose shape of uncertainty distribution: normal, triangular, beta, truncated...
- These outcomes are then combined in order estimate uncertainty in yields

Correlated Uncertainty

- Generally, uncertainties are assumed to be independent; however, this is not always the case...
- For example, uncertainties in measured wind speeds (anemometer, tower shadow...) impact uncertainty in the shear profile estimate
- Correlations can lead to magnification of uncertainty
- Correlations between uncertainties can be defined as part of a stochastic approach

Create multiple distributions linked by a specified correlation

Correlated Uncertainty

- Generally, uncertainties are assumed to be independent; however, this is not always the case...
- For example, uncertainties in measured wind speeds (anemometer, tower shadow...) impact uncertainty in the shear profile estimate
- Correlations can lead to magnification of uncertainty
- Correlations between uncertainties can be defined as part of a stochastic approach

Create multiple distributions linked by a specified correlation

Time-Varying Uncertainty

- A stochastic uncertainty assessment also facilitates the incorporation of time-varying uncertainty
- Useful for estimating:
 - Impact of losses as a project ages
 - Increasing uncertainty in the strength of the wind resource due to changes in the climate

Wind Speed Uncertainty due to Climate Change

Reality Check...

- In many ways, flexibility of the analysis exceeds our knowledge of the underlying uncertainty distributions... even the uncertainty is uncertain!
- Given the same assumptions, results from a stochastic approach to uncertainty propagation agree with simple RSS approach
- A stochastic approach requires more computational power, but that doesn't make it more difficult to understand or interpret produces results in an intuitive and flexible format
- The ability to assess non-normally distributed, correlated, and timevarying uncertainty challenges our ability to assess the inputs
- It's better to estimate rather than ignore known sources of uncertainty
- Performing analyses multiple ways (different reference sites, different wind flow models...) can help to understand sources of uncertainty

- Uncertainty analysis shouldn't be restricted to a final step in the preconstruction yield assessment process
- Preliminary and interim uncertainty analyses can be very valuable for informing decisions about project spending:
 - Tower configuration and locations, remote sensing, wind flow modelling, monitoring duration...
- Consider how probability of exceedence results are going to be used:
 - Is the goal to quantify uncertainty in energy production or uncertainty in revenue?
- Account for everything, but don't double count
- Take advantage of all potential inputs relevant operational data?

Simplified Example - Sources of Uncertainty

Source	Standard Uncertainty		
Anemometer	0.1 m/s		
Shear	0.25 m/s		
МСР	1.0% of wind speed		
Wind Flow Model	5.0% production		
Future Period Variability	1.1% wind speed		
Historical Period Variability	1.5% wind speed		
Tower Effects	0.5% wind speed		
Data Quality	0.1 m/s		
Losses	2.7% production		

- Somewhat difficult to assess impact in this format
- In a stochastic approach, the correlation of inputs to overall uncertainty can be used to assess individual contributions

Simplified Example – Contribution to Overall Uncertainty

Simplified Example – Revised Contribution to Overall Uncertainty

- Focus effort on minimizing largest contributors to overall uncertainty
- More information doesn't necessarily mean that yield estimates will go up at least not at the P50 level
- However, reduced uncertainty can increase the P90, P95, P99...
- Example: Case 1 has high shear and modelling uncertainty; Case 2 assumes additional onsite monitoring which resulted in lowered yield expectation but also decreased uncertainty
- Despite decreased P50, increased P95 may result in more viable project
- Consider a target DSCR of 1.0x at P95, a 3% increase in expected production is significant

	Cu	5C I				
Probabilities of Exceedence	Confidence level (%)					
(Percentage of Case 1						
P50 Net Yield)	50	70	90	95	99	
1-Yr Average Production	100%	91%	78%	72%	61%	
10-Yr Average Production	100%	94%	85%	81%	73%	
20-Yr Average Production	100%	94%	86%	82%	74%	

Case 1

Case 2: Reduced Yield and Unco	ertainty	
--------------------------------	----------	--

Probabilities of Exceedence	Confidence level (%)				
(Percentage of Case 1	50	70	00	05	
PSU Net Yield)	50	70	90	95	99
1-Yr Average Production	98%	90%	79%	73%	63%
10-Yr Average Production	98%	94%	87%	84%	78%
20-Yr Average Production	98%	94%	88%	85%	80%

Concluding Remarks

- Uncertainty in wind resource assessment is unavoidable
- Tools and techniques are facilitating more comprehensive uncertainty analyses
- Industry's understanding of wind resource assessment uncertainty is evolving (non-normal, biased, correlated, time-varying...) – expect greater scrutiny
- Positive for the industry because it helps inform/incent good project development practices reduced uncertainty improves project viability
- Need for continued evaluation and integration of operational experience
- Probability of exceedence results are valuable, but so is the process include this at intermediate stages in development process

Rob Istchenko P.Eng.

rob.istchenko@genivar.com - 403.248.9463

Building Municipal Infrastructure Transportation Industrial Power Environment

Sustainable solutions in engineering

